Accurate, Focused Research on Law, Technology and Knowledge Discovery Since 2002

Location Tracking, Mosaic Theory, and Machine Learning

Enough is Enough - Location Tracking, Mosaic Theory, and Machine Learning - Steven M. Bellovin, Renée M. Hutchins, Tony Jebara, Sebastian Zimmeck. New York University Journal of Law & Liberty, vol 8:555, 2014.

“Since 1967, when it decided Katz v. United States, the Supreme Court has tied the right to be free of unwanted government scrutiny to the concept of reasonable expectations of privacy. An evaluation of reasonable expectations depends, among other factors, upon an assessment of the intrusiveness of government action. When making such assessment historically the Court has considered police conduct with clear temporal, geographic, or substantive limits. However, in an era where new technologies permit the storage and compilation of vast amounts of personal data, things are becoming more complicated. A school of thought known as “mosaic theory” has stepped into the void, ringing the alarm that our old tools for assessing the intrusiveness of government conduct potentially undervalue privacy rights. Mosaic theorists advocate a cumulative approach to the evaluation of data collection. Under the theory, searches are “analyzed as a collective sequence of steps rather than as individual steps.” The approach is based on the recognition that comprehensive aggregation of even seemingly innocuous data reveals greater insight than consideration of each piece of information in isolation. Over time, discrete units of surveillance data can be processed to create a mosaic of habits, relationships, and much more. Consequently, a Fourth Amendment analysis that focuses only on the government’s collection of discrete units of trivial data fails to appreciate the true harm of long-term surveillance — the composite.  In the context of location tracking, the Court has previously suggested that the Fourth Amendment may (at some theoretical threshold) be concerned with the accumulated information revealed by surveillance. Similarly, in the Court’s recent decision in United States v. Jones, a majority of concurring justices indicated willingness to explore such an approach. However, in general, the Court has rejected any notion that technological enhancement matters to the constitutional treatment of location tracking. Rather, it has found that such surveillance in public spaces, which does not require physical trespass, is equivalent to a human tail and thus not regulated by the Fourth Amendment. In this way, the Court has avoided quantitative analysis of the amendment’s protections.  The Court’s reticence is built on the enticingly direct assertion that objectivity under the mosaic theory is impossible. This is true in large part because there has been no rationale yet offered to objectively distinguish relatively short-term monitoring from its counterpart of greater duration. As Justice Scalia recently observed in Jones: “it remains unexplained why a 4-week investigation is ‘surely’ too long.” This article suggests that by combining the lessons of machine learning with the mosaic theory and applying the pairing to the Fourth Amendment we can see the contours of a response. Machine learning makes clear that mosaics can be created. Moreover, there are also important lessons to be learned on when that is the case…In five parts, this article advances the conclusion that the duration of investigations is relevant to their substantive Fourth Amendment treatment because duration affects the accuracy of the predictions. Though it was previously difficult to explain why an investigation of four weeks was substantively different from an investigation of four hours, we now have a better understanding of the value of aggregated data when viewed through a machine learning lens. In some situations, predictions of startling accuracy can be generated with remarkably few data points.”

 

Sorry, comments are closed for this post.